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ayoub.ajarra@inria.fr

< ceniacie R@mMinder: RL setting
le

Key characteristics of an RL problem:
+ Learning to take action in many situations.
* Delayed reward/credit assignment.

+ Exploration/Exploitation trade-off.



( ncine Difference with bandit setting (immediate RL)
le

« Agent sees the same state all the time.

* Rewards are immediate.

« Exploration/Exploitation trade-off.




< centraleill Types of feedback

+ Instructive feedback:
1. Instructs the right action a*.
2. Ignores the action taken.
3. Used in supervised learning.
+ Evaluative feedback:
1. Evaluates the action taken A; by giving some reward.

2. Completely depends on the action taken.
3. Used in RL.



( cenaciiie EXample: K-armed bandits
le

0 —> Agent —> 4

‘1”2“;(‘

Assumption: Rewards are chosen from stationary probability distributions that
depend on the action taken.
Goal: Maximize total reward over some period of time.



( ceraiciiie: Value of an action

+ Actual value of action a (Ground-truth):

q’(a) = E{R¢|A¢ = a}

+ Always pick action a* = arg max,c 4q*(a)
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( ceraiciiie: Value of an action

+ Actual value of action a (Ground-truth):
q’(a) = E{R¢|A¢ = a}

+ Always pick action a* = arg max,c 4q*(a)
+ q*(a) is unknown to the agent.

+ What the agent can access: Q; the estimate of the value function q*(a) at
timestep t

+ Find the best action as quickly as possible:

A = argmaxae 4Qt(a)



< ceniaciine REgret Vs Reward
le

Regret is the amount of reward the agent has lost because of the learning process
(selected policy)

« If the optimal action was known:

Regret = Kq*(a")




< ceniaciine REgret Vs Reward
le

Regret is the amount of reward the agent has lost because of the learning process
(selected policy)

« If the optimal action was known:

Regret = Kq*(a")

+ In reality, the optimal action is unknown:

K

Regret = Kq*(a*) — Z Ry
t=1



( centralelille Action-value methods: Estimation of (),

Qu(a) Sum of rewards when action a taken prior to time t
a) =
’ Number of times action a taken prior to time t

_ s Rilaa
Zf;ll ]‘Ai:a




( centaieie HOW to solve the bandit problem ?
le

+ Only exploit (Greedy):
Ay = argmax,c 4 Q¢ (a)

+ Not enough for learning.
« Why?



@ centralelille
ecote [ 4

e-greedy algorithm

A possible solution




< centralelille E'greedy aCtionS
S

General idea: Take greedy action, and once in a while take e-greedy action.
argmax Q(a) with probability 1 — e,
¢ = acA
Random action from A with probability e.
Advantage: In the limit, every action will be sampled an infinite number of times,

thus ensuring that Q¢(a) converges to q*(a)



( centaictiie EXample 10-armed bandits
le

2000 randomly generated K-armed bandits with K fixed to 10, g* are selected
according to a gaussian distribution with mean 0 and variance 1. When the action
is taken the reward is sampled from a Gaussian distribution of mean q*(A¢) and
variance 1.



C centralelille Example 10-armed bandits

+9-(3)

Reward =)

distribution RO
=, (10)

I
1 2 3 4 5 6 " 8 9 10




( cnciiie COMparaison between greedy and e-greedy
le
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( ceniraieiite IMplementation of e-greedy
S

+ R; denote the reward received after thei? selection of this action.

« Let Qun denote the estimate of its action value after it has been selected n — 1
times.

Ri+Ra+---+Rn
n—1

Qn -

+ Naive implementation: store all rewards and compute the average every time.

« Memory constraints.



( ceniraieiite IMplementation of e-greedy
S

+ R; denote the reward received after thei? selection of this action.

« Let Qun denote the estimate of its action value after it has been selected n — 1
times.

Ri+Ra+---+Rn
n—1

Qn -

+ Naive implementation: store all rewards and compute the average every time.
« Memory constraints.
+ Can we do better?



( centraciine INCremental implementation
le

Qni1 = %ZRi
i—1

(Rn +

n—1
n—1
n—1 ZRi)
i=1

= ~(Rn + (0 = 1)Qu)

n
1
= Qn + H(Rn - Qn)
New Estimate = Old Estimate + Step size[Target — Old estimate]

= Bl



< cor‘tr’rﬂ'@?"i“; PseUdO'COde

A simple bandit algorithm

Initialize, for a = 1 to k:

Qa) « 0
N(a) < 0

Loop forever:
Al { argmax, Q(a) with probability 1 — ¢  (breaking ties randomly)
a random action with probability
R « bandit(A)
N(A)«~ N(A)+1
Q4) « Q(4) + xR - Q(4)]




( cniaieie What about non-stationary rewards ?
le

+ It makes sense to give more weight to recent rewards than long-past rewards.

* One easy way to do that is by having a constant step size parameter:

Qn+1 — Qn + a<Rn - Qn)



( cniaieie What about non-stationary rewards ?
le

Qn+1 - Qn + a(Rn - Qn)
= O51:{11 + (1 - O[)Qn
=aRy+ (1 —a)(aRy—1+ (1 — @)Qu-1)

n
=(1-a)"Q+Y al-a)" 'R
i=1
This is weighted average because:

(1—a)"+ Za(l —a) =1
i=1



( cniaieie What about non-stationary rewards ?
le

+ Let ay(a) denote stepsize parameter used to process the reward received after
the n*® selection of action a.

* an(a) = I leads to sample average method.
+ Note: Convergence to the values is not guaranteed for all choices of ay(a)
+ Conditions required to assure convergence with probability 1:

1. guarantees that the steps are large enough to eventually overcome any initial
conditions or random fluctuations.

Z an(a) = oo

2. guarantees that the steps eventually become small enough to assure convergence.

o0
Z an(a)? > oo
i=1



( cenaciine Stationary Vs Non-stationary settings
le

Both conditions are met for ay(a) = 1. But for ay(a) = a, the second condition is
not met.




( centraciie. OPtimism
-

All these methods are dependent on the initial action - value estimates, Qi(a).
They are biased by their initial estimates.




( cent m\e;lillre Optimism
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( ceniraeniie HaNds-On Session: e- greedy
S

Lets look at a demo.




@ centralelille
4]

ECOLE

Upper Confidence Bound
Algorithm

A more plausible solution




( cent v’d\»}lillre Reminder

On board.




( cnaciile - Hands-On Session: UCB

Lets look at a demo.
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