
Multi-Armed Bandit Problems
Recitation: greedy andϵ-greedy policy, UCB

Ayoub Ajarra

21 de noviembre de 2024

ayoub.ajarra@inria.fr


Reminder: RL setting

Key characteristics of an RL problem:
• Learning to take action in many situations.
• Delayed reward/credit assignment.
• Exploration/Exploitation trade-off.

2



Difference with bandit setting (immediate RL)

• Agent sees the same state all the time.
• Rewards are immediate.
• Exploration/Exploitation trade-off.

3



Types of feedback

• Instructive feedback:
1. Instructs the right action a∗.
2. Ignores the action taken.
3. Used in supervised learning.

• Evaluative feedback:
1. Evaluates the action taken At by giving some reward.
2. Completely depends on the action taken.
3. Used in RL.

4



Example: K-armed bandits

Assumption: Rewards are chosen from stationary probability distributions that
depend on the action taken.

Goal: Maximize total reward over some period of time.

5



Value of an action

• Actual value of action a (Ground-truth):

q∗(a) = E{Rt|At = a}

• Always pick action a∗ = arg maxa∈Aq∗(a)

• q∗(a) is unknown to the agent.
• What the agent can access: Qt the estimate of the value function q∗(a) at

timestep t
• Find the best action as quickly as possible:

At = arg maxa∈AQt(a)

6



Value of an action

• Actual value of action a (Ground-truth):

q∗(a) = E{Rt|At = a}

• Always pick action a∗ = arg maxa∈Aq∗(a)
• q∗(a) is unknown to the agent.

• What the agent can access: Qt the estimate of the value function q∗(a) at
timestep t

• Find the best action as quickly as possible:

At = arg maxa∈AQt(a)

7



Value of an action

• Actual value of action a (Ground-truth):

q∗(a) = E{Rt|At = a}

• Always pick action a∗ = arg maxa∈Aq∗(a)
• q∗(a) is unknown to the agent.
• What the agent can access: Qt the estimate of the value function q∗(a) at

timestep t
• Find the best action as quickly as possible:

At = arg maxa∈AQt(a)

8



Regret Vs Reward

Regret is the amount of reward the agent has lost because of the learning process
(selected policy)

• If the optimal action was known:

Regret = Kq∗(a∗)

• In reality, the optimal action is unknown:

Regret = Kq∗(a∗)−
K∑

t=1

Rt

9



Regret Vs Reward

Regret is the amount of reward the agent has lost because of the learning process
(selected policy)

• If the optimal action was known:

Regret = Kq∗(a∗)

• In reality, the optimal action is unknown:

Regret = Kq∗(a∗)−
K∑

t=1

Rt

10



Action-value methods: Estimation of Qt

Qt(a) =
Sum of rewards when action a taken prior to time t

Number of times action a taken prior to time t

=

∑t−1
i=1 Ri1Ai=a∑t−1
i=1 1Ai=a

11



How to solve the bandit problem ?

• Only exploit (Greedy):
At = arg maxa∈AQt(a)

• Not enough for learning.
• Why?

12



ϵ-greedy algorithm

A possible solution



ϵ-greedy actions

General idea: Take greedy action, and once in a while take ϵ-greedy action.

At =

argmax
a∈A

Qt(a) with probability 1− ϵ,

Random action from A with probability ϵ.

Advantage: In the limit, every action will be sampled an infinite number of times,
thus ensuring that Qt(a) converges to q∗(a)

14



Example 10-armed bandits

2000 randomly generated K-armed bandits with K fixed to 10, q∗ are selected
according to a gaussian distribution with mean 0 and variance 1. When the action
is taken the reward is sampled from a Gaussian distribution of mean q∗(At) and
variance 1.

15



Example 10-armed bandits

16



Comparaison between greedy and ϵ-greedy

17



Implementation of ϵ-greedy

• Ri denote the reward received after theith selection of this action.
• Let Qn denote the estimate of its action value after it has been selected n − 1

times.

Qn =
R1 + R2 + · · ·+ Rn−1

n − 1

• Naive implementation: store all rewards and compute the average every time.
• Memory constraints.

• Can we do better?

18



Implementation of ϵ-greedy

• Ri denote the reward received after theith selection of this action.
• Let Qn denote the estimate of its action value after it has been selected n − 1

times.

Qn =
R1 + R2 + · · ·+ Rn−1

n − 1

• Naive implementation: store all rewards and compute the average every time.
• Memory constraints.
• Can we do better?

19



Incremental implementation

Qn+1 =
1

n

n∑
i=1

Ri

=
1

n
(Rn +

n − 1

n − 1

n−1∑
i=1

Ri)

=
1

n
(Rn + (n − 1)Qn)

= Qn +
1

n
(Rn − Qn)

New Estimate = Old Estimate + Step size[Target − Old estimate]

20



Pseudo-code

21



What about non-stationary rewards ?

• It makes sense to give more weight to recent rewards than long-past rewards.
• One easy way to do that is by having a constant step size parameter:

Qn+1 = Qn + α(Rn − Qn)

22



What about non-stationary rewards ?

Qn+1 = Qn + α(Rn − Qn)

= αRn + (1− α)Qn

= αRn + (1− α)(αRn−1 + (1− α)Qn−1)

= (1− α)nQ1 +

n∑
i=1

α(1− α)n−iRi

This is weighted average because:

(1− α)n +
n∑

i=1

α(1− α)n−i = 1

23



What about non-stationary rewards ?
• Let αn(a) denote stepsize parameter used to process the reward received after

the nth selection of action a.
• αn(a) = 1

n leads to sample average method.
• Note: Convergence to the values is not guaranteed for all choices of αn(a)
• Conditions required to assure convergence with probability 1:

1. guarantees that the steps are large enough to eventually overcome any initial
conditions or random fluctuations.

∞∑
i=1

αn(a) = ∞

2. guarantees that the steps eventually become small enough to assure convergence.
∞∑
i=1

αn(a)2 > ∞

24



Stationary Vs Non-stationary settings

Both conditions are met for αn(a) = 1
n . But for αn(a) = α, the second condition is

not met.

25



Optimism

All these methods are dependent on the initial action - value estimates, Q1(a).
They are biased by their initial estimates.

26



Optimism

27



Hands-On Session: ϵ- greedy

Lets look at a demo.

28



Upper Confidence Bound
Algorithm

A more plausible solution



Reminder

On board.

30



Hands-On Session: UCB

Lets look at a demo.

31



Questions ?


