
Practical session 3
Recitation: Markov Decision Processes, Dynamic Programming, Monte Carlo
Control and TD Learning
Ayoub Ajarra
18 de febrero de 2025

ayoub.ajarra@inria.fr

Reminder: Markov Decision Process

Definition
An MDP is a tuple ⟨𝒮, 𝒜, 𝒫, ℛ⟩ where:
• 𝒮 a set of states of the world.
• 𝒜 a actions
• 𝒫 ∶ 𝒮 × 𝒜 → Δ(𝒮) state-transition function (Gives 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)).
• ℛ ∶ 𝒮 × 𝒜 → ℝ reward function (Gives 𝔼ℛ{ℛ(𝑠𝑡, 𝑎𝑡)|𝑠𝑡, 𝑎𝑡}).

Markov property
𝑝(𝑟𝑡, 𝑠𝑡+1|𝑠0, 𝑎0, 𝑟1, ⋯ , 𝑠𝑡, 𝑎𝑡) = 𝑝(𝑟𝑡, 𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), ⟨next state, expected reward⟩
depends through the whole history only on ⟨previous state, current action⟩

2

Given dynamics, how to find an optimal policy?

3

Goal: solve an MDP by finding an optimal policy

• What is the objective?
1. Reward: discounting and design.
2. Expected objective: state and action-value function

• How to evaluate the objective?
1. Bellman expectation equations.

• How to improve the objective?
1. Bellman optimality equations

• Combine evaluation and improvement:
1. Generalized Policy Iteration

4

Explaining goals to agent through reward

Reward hypothesis (R.Sutton)
Goals and purposes can be thought of as the maximization of the expected value
of the cumulative sum of a received scalar signal.

Cumulative reward also referred to as return is:

𝐺𝑡 = 𝑅𝑡 + 𝑅𝑡+1 + ⋯ + 𝑅𝑇

Natural rewards exist for many application:
• Maze solving: -1 every time step until the agent escapes.
• Chess: +1 for winning, -1 for losing, 0 for drawing the games.

Critical that the rewards we set up indicate what we want the agent to
accomplish and not how to achieve it. Reward hacking examples.

5

https://docs.google.com/spreadsheets/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml

Explaining goals to agent through reward

Reward hypothesis (R.Sutton)
Goals and purposes can be thought of as the maximization of the expected value
of the cumulative sum of a received scalar signal.

Cumulative reward also referred to as return is:

𝐺𝑡 = 𝑅𝑡 + 𝑅𝑡+1 + ⋯ + 𝑅𝑇

Natural rewards exist for many application:
• Maze solving: -1 every time step until the agent escapes.
• Chess: +1 for winning, -1 for losing, 0 for drawing the games.

Critical that the rewards we set up indicate what we want the agent to
accomplish and not how to achieve it.

Reward hacking examples.

6

https://docs.google.com/spreadsheets/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml

Explaining goals to agent through reward

Reward hypothesis (R.Sutton)
Goals and purposes can be thought of as the maximization of the expected value
of the cumulative sum of a received scalar signal.

Cumulative reward also referred to as return is:

𝐺𝑡 = 𝑅𝑡 + 𝑅𝑡+1 + ⋯ + 𝑅𝑇

Natural rewards exist for many application:
• Maze solving: -1 every time step until the agent escapes.
• Chess: +1 for winning, -1 for losing, 0 for drawing the games.

Critical that the rewards we set up indicate what we want the agent to
accomplish and not how to achieve it. Reward hacking examples.

7

https://docs.google.com/spreadsheets/d/e/2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml

Example 1: Continuous Cooling System for Data
Centers

• States – temperature measurements
• Actions – different fans speed.
• 𝑅 = 0 for exceeding temperature thresholds
• 𝑅 = +1 for each second system is cool.

What could go wrong with such a design?
Infinite return for non-optimal behavior!

8

Example 1: Continuous Cooling System for Data
Centers

• States – temperature measurements
• Actions – different fans speed.
• 𝑅 = 0 for exceeding temperature thresholds
• 𝑅 = +1 for each second system is cool.

What could go wrong with such a design?

Infinite return for non-optimal behavior!

9

Example 1: Continuous Cooling System for Data
Centers

• States – temperature measurements
• Actions – different fans speed.
• 𝑅 = 0 for exceeding temperature thresholds
• 𝑅 = +1 for each second system is cool.

What could go wrong with such a design?
Infinite return for non-optimal behavior!

10

Example 2: Robot motion (reaching destination Z)

• State – position, velocities of joints
• Actions – actuator forces to joints
• Reward 𝑅 = 𝑚𝑎𝑥(0, 𝑑(𝑥, 𝑍) − 𝑑(𝑥’, 𝑍))

What could go wrong with such a design?
Positive feedback loop!

11

Example 2: Robot motion (reaching destination Z)

• State – position, velocities of joints
• Actions – actuator forces to joints
• Reward 𝑅 = 𝑚𝑎𝑥(0, 𝑑(𝑥, 𝑍) − 𝑑(𝑥’, 𝑍))

What could go wrong with such a design?

Positive feedback loop!

12

Example 2: Robot motion (reaching destination Z)

• State – position, velocities of joints
• Actions – actuator forces to joints
• Reward 𝑅 = 𝑚𝑎𝑥(0, 𝑑(𝑥, 𝑍) − 𝑑(𝑥’, 𝑍))

What could go wrong with such a design?
Positive feedback loop!

13

Reward discounting

Reward discounting

Idea: Get rid of infinite sum by discounting

𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+1 + ⋯ + 𝑅𝑇 =
∞

∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘

Intuition:

The same cake compared to today’s one worth:
1. 𝛾 times less tomorrow
2. 𝛾2 times less the day after tomorrow
3. ⋯ 𝑒𝑡𝑐

15

Reward discounting

Idea: Get rid of infinite sum by discounting

𝐺𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+1 + ⋯ + 𝑅𝑇 =
∞

∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘

Intuition: The same cake compared to today’s one worth:
1. 𝛾 times less tomorrow
2. 𝛾2 times less the day after tomorrow
3. ⋯ 𝑒𝑡𝑐

16

Discounting makes return finite

Maximal return for 𝑅 = +1: 𝐺0 = ∑∞
𝑘=0 𝛾𝑘 = 1

1−𝛾

17

Discounting is inherent to humans 1

• Quasi-hyperbolic 𝑓(𝑡) = 𝛽𝛾𝑡

• Hyperbolic discounting 𝑓(𝑡) = 1
1+𝛽𝑡

• Some ideas in economics: value of $100 is higher today than in the future.
• Future is uncertain: reduce its influence for making decisions at the current
time step.

1Laibson, D. (1997). Golden eggs and hyperbolic discounting. The Quarterly Journal of
Economics, 112(2), 443-478.

18

Finding optimal policy

Solving the MDP

Solving the MDP means finding the sequence of actions with the largest
(discounted) return.

Definition
A policy is a mapping from a trajectory to an action.

𝜋 ∶ ℋ → Δ(𝒜)

Remarks:
• 𝜋 is said to be stationary if it depends only on the current state (i.e.

𝜋 ∶ 𝒮 → Δ(𝒜))
• 𝜋 is said to be deterministic if the output is an action (i.e. 𝜋 ∶ 𝒮 → 𝒜)

20

State value function

Definition
The value of a state 𝑠 under a policy 𝜋 denoted by 𝑉 𝜋(𝑠) is defined as:

𝑉 𝜋(𝑠) = 𝔼𝜋{𝐺𝑡|𝑆𝑡 = 𝑠}

Remark:
The value function at the terminal state is zero (end of interaction).

21

Action value function

Definition
The value of taking action 𝑎 in a state 𝑠 under a policy 𝜋 denoted by 𝑄𝜋(𝑠) is
defined as:

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋{𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎}
The expected total reward agent gets from state 𝑠 by taking action 𝑎 and
following policy 𝜋 from the next state.

22

Action value function

Definition
The value of taking action 𝑎 in a state 𝑠 under a policy 𝜋 denoted by 𝑄𝜋(𝑠) is
defined as:

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋{𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎}

Assuming I know the state value, how to compute the action value? and
vice versa

𝑄𝜋(𝑠, 𝑎) = ∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑉 𝜋(𝑠′))

𝑉 𝜋(𝑠) = ∑
𝑎

𝜋(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)

23

Bellman optimality equations
Bellman equation for value function

𝑉 ∗(𝑠) = max
𝑎

𝔼{𝑅𝑡 + 𝛾𝑉 ∗(𝑠𝑡+1)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎}

Alternatively,
𝑉 ∗(𝑠) = max

𝑎
∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾𝑉 ∗(𝑠′))

Bellman equation for action-state value function
𝑄∗(𝑠, 𝑎) = max

𝑎
𝔼{𝑅𝑡 + 𝛾max

𝑎′
𝑄∗(𝑠𝑡+1, 𝑎′)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎}

Alternatively,
𝑄∗(𝑠, 𝑎) = ∑

𝑠′,𝑟
𝑝(𝑠′, 𝑟|𝑠, 𝑎)(𝑟 + 𝛾max

𝑎
𝑄∗(𝑠′, 𝑎′))

24

Solving Bellman equation: Dynamic programming

The idea is to turn Bellman optimality equations into update rules in two steps:
1. Policy evaluation\prediction: Given a policy 𝜋, how to estimate 𝑉 𝜋(𝑠)?
2. Policy improvement: Given the estimated 𝑉 𝜋(𝑠), how a policy such 𝜋′ s.t

𝜋′ ≥ 𝜋 (order defined by the value function).
This is referred to as policy iteration.

25

Step 1: Policy evaluation

Given a policy 𝜋, compute 𝑉 𝜋.

Update rule

𝑉 𝜋(𝑠) = 𝔼{𝐺𝑡|𝑆𝑡 = 𝑠}
= 𝔼𝜋{𝑅𝑡+1 + 𝛾𝐺𝑡+1|𝑆𝑡 = 𝑠}

𝑉 𝜋(𝑠) = ∑
𝑎

𝜋(𝑎|𝑠) ∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎){𝑟 + 𝛾𝑉 𝜋(𝑠′)}

𝑉𝑛+1(𝑠) = ∑
𝑎

𝜋(𝑎|𝑠) ∑
𝑠′,𝑟

𝑝(𝑠′, 𝑟|𝑠, 𝑎){𝑟 + 𝛾𝑉𝑛(𝑠′)}

26

Algorithm

27

Policy improvement

Policy improvement theorem
Let (𝜋, 𝜋′) denote a pair of deterministic policies s.t:

∀𝑠 ∈ 𝒮 ∶ 𝑄𝜋(𝑠, 𝜋′(𝑠)) ≥ 𝑉 𝜋(𝑠)

Then 𝜋′ ≥ 𝜋.

28

Combining the two steps: policy iteration

29

Value iteration

30

Hands on code

31

What we’ve learned so far ...

We assumed that dynamics are known (Model-based RL). In this case Dynamic
Programming can be applied and we can plan ahead.
In real-world scenarios, this is not always true.

Dealing with unknown dynamics
Assuming I know the What can we do when the dynamics (𝑝(𝑠′|𝑠, 𝑎)) are
unknown?

Model-free RL
We can sample trajectories and try random actions ...

32

What we’ve learned so far ...

We assumed that dynamics are known (Model-based RL). In this case Dynamic
Programming can be applied and we can plan ahead.
In real-world scenarios, this is not always true.

Dealing with unknown dynamics
Assuming I know the What can we do when the dynamics (𝑝(𝑠′|𝑠, 𝑎)) are
unknown?

Model-free RL
We can sample trajectories and try random actions ...

33

Approach 1: Monte-Carlo

Idea
1. Sample all trajectories conditions on current state action (𝑠, 𝑎).
2. Loop over generated trajectories to estimate the returns conditioned on the
current state action.

3. Take the average over the trajectories collected.

Many trajectories to deal with ...
This algorithm requires lot of computations, and does not work in more complex
environments (For example in high dimensional state space, images,...)

34

Approach 1: Monte-Carlo

Idea
1. Sample all trajectories conditions on current state action (𝑠, 𝑎).
2. Loop over generated trajectories to estimate the returns conditioned on the
current state action.

3. Take the average over the trajectories collected.

Many trajectories to deal with ...
This algorithm requires lot of computations, and does not work in more complex
environments (For example in high dimensional state space, images,...)

35

Alternatives: TD-learning (On board)

1. Q-learning.
2. SARSA
3. Expected SARSA
4. A comparison between Q-learning and SARSA (Q-learning achieves
optimality without further exploration.)

36

Questions ?

